Black-body Absorber:	· · · ·		
incident radiation \rightarrow all	absorbed by b	lack-body	$y \rightarrow all re-emitted by black-body$
Late 19th Century picture	Hertz/Maxwell: "EM Radiation is waves ." Michelson/Morley: "There is no ether ." <i>dichotomy</i> ?		
Observed black-body emission profile This had been measured and obse for years, and accepted as empiri	e: erved cal fact.	light intensity ("brightness")	lower-temp. higher-temp
Best theoretical model of EM emission Lord Rayleigh + Sir James Jeans (England) Function: $I(\lambda,T) = \frac{2\pi ckT}{\lambda^4}$	on in 1890s: s	light intensity ("brightness")	UV wavelengths hence, the "ultraviolet catastrophe."

Also, on a more technical note, the area under the curve from the Rayleigh-Jeans expression will "diverge to infinity" since you can have any wavelength you want (i.e., $\int I(\lambda, T) d\lambda \rightarrow \infty$ for infinitesimal $d\lambda$).

So now we're stuck... EM radiation clearly behaves like waves, but we don't have an accurate way of predicting how they're emitted, or in what quantity.

MAX PLANCK TO THE RESCUE!!!

(pictured at right, playing the piano; from <u>www.max-planck.mpg.de</u>)

What was Planck's wacky idea in 1900?

In other words...

Planck's function, which *accurately* described the observed black-body emission: $I(\lambda, T) = \frac{2\pi hc^2}{\lambda^5 (e^{hc/\lambda kT} - 1)}$

h: "Planck's Constant" *e*: base of the "natural logarithm," 2.718... (cf. π)

"Big deal," you say. "So it's another goofy-looking function that describes light intensity. So what?"

- For long wavelengths, Planck's equation agrees with the Rayleigh-Jeans law (which itself was based on classical wave calculations).
- ► For short wavelengths, Planck's equation agrees with experimentally-observed radiation patterns.

Ground-breaking assumptions:

1. EM waves are not like other waves... they are little "packages" of pure energy called QUANTA. This is how we typically represent a quantum wave-packet: $v \rightarrow v \rightarrow v$ ($v=3 \times 10^8$ m/s)

Hence... energy is transmitted from one place to another in discrete chunks.

Recall an electron vibrating up-and-down in a broadcast antenna, which gives off energy in the form of EM radiation. What does Planck's Assumption #1 imply?

photon:

Food for thought: Compare this to the standing wave patterns seen in vibrating strings. Jot down a couple of quick ideas in the space below.

2. The energy contained in a quantum is related to its frequency:

$$E_{\text{quantum}} = hf$$

E: energy (J) *h*: Planck's constant (6.626×10^{-34} J·s) *f*: frequency (Hz, or s⁻¹)

- ** Frequency is sometimes given the symbol v, the Greek letter "nu" (cf. the Roman letter "n")... then. *E=h*v. Same equation, though. (Yes, it looks like the letter "v.")
- ** Remember, one electron-volt is a unit of energy such that $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$. Find the value of Planck's constant in units of eV·s.

SAMPLE problem 1

Calculate the energy in joules and electron volts of

- (a) a quantum of blue light with a frequency of $6.67 \times 10^{14} \text{ Hz}$
- (b) a quantum of red light with a wavelength of 635 nm

Practice

Understanding Concepts

- 1. Explain which of the following quantities are discrete: time, money, matter, energy, length, scores in hockey games.
- **2.** Determine the energy, in electron volts, for quanta of electromagnetic radiation with the following characteristics:
 - (a) wavelength = 941 nm (infrared radiation)
 - (b) frequency = 4.4×10^{14} Hz (red light)
 - (c) wavelength = 435 nm (violet light)
 - (d) frequency = 1.2×10^{18} Hz (X rays)
- 3. Calculate the wavelength, in nanometres, of a quantum of electromagnetic radiation with 3.20 \times 10⁻¹⁹ J of energy. What colour is it? (See Section 9.6 for reference.)
- 4. Calculate the frequency of a 2.25-eV quantum of electromagnetic radiation.
- **5.** Compare the respective energies of a quantum of "soft" ultraviolet radiation $(\lambda = 3.80 \times 10^{-7} \text{ m})$ and a quantum of "hard" ultraviolet radiation $(\lambda = 1.14 \times 10^{-7} \text{ m})$, expressing your answer as a ratio.

Making Connections

6. As you read this text, your body may be bombarded with quanta from radio waves $(\lambda = 10^2 \text{ m})$ and quanta of cosmic rays, energetic particles, rather than electromagnetic waves, which nevertheless prove in quantum theory to have a wave aspect $(\lambda = 10^{-16} \text{ m})$. How many quanta of radio waves would it take to impart the same amount of energy as a single quantum of cosmic radiation? Comment on the relative biological hazards posed by these two sources of energy.

Answers

- 2. (a) 1.32 eV
 - (b) 1.8 eV
 - (c) 2.86 eV
 - (d) $5.0 \times 10^3 \, \mathrm{eV}$
- 3. 622 nm
- 4. 5.43 imes 10¹⁴ Hz
- 5. 3.3:1
- 6. 10¹⁸